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Abstract

Almeida de Miranda Santos, Renan; Rodriguez, Noemi (Advisor);
Ierusalimschy, Roberto (Co-Advisor). Revisiting Monitors. Rio
de Janeiro, 2020. 56p. Dissertação de mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Most current programming languages do not restrict the use of the
concurrency primitives they provide, leaving it to the programmer to de-
tect data races. In this dissertation, we revisit the monitor model, which
guards against data races by guaranteeing that accesses to shared variables
occur only inside monitors, and show that this concept can be implemented
in a programming language with referential semantics, given appropriate
typing rules. We describe the Aria programming language, designed with
native monitors according to these rules. Through the discussion of classic
concurrency problems, we evaluate the use of Aria monitors for synchroni-
zation at different levels of granularity and extend the language with new
features to address the limitations of monitors regarding performance and
expressiveness.

Keywords
Concurrency; Monitors; Shared Memory; Immutability; Classic

Concurrency Problems; Concurrent Programming Languages.
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Resumo

Almeida de Miranda Santos, Renan; Rodriguez, Noemi; Ierusalims-
chy, Roberto. Revisitando Monitores. Rio de Janeiro, 2020. 56p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

A maioria das linguagens de programação modernas fornece ferramen-
tas para programação concorrente sem restringir seu uso. Assim, fica a cargo
do programador evitar a ocorrência de condições de corrida. Nessa disserta-
ção, revisitamos o modelo de monitores, projetados para prevenir condições
de corrida ao limitar o acesso à variáveis compartilhadas, e mostramos que
monitores podem ser implementados em linguagens de programação com
semântica referencial, dadas as regras de tipagem apropriadas. Nós descre-
vemos a linguagem de programação Aria, projetada com monitores nativos
seguindo a proposta original do modelo. Através da resolução de proble-
mas clássicos de concorrência, nós avaliamos o uso de monitores em Aria
para sincronização em diferentes níveis de granularidade, e extendemos a
linguagem com novos recursos a fim de contemplar as limitações do modelo
envolvendo desempenho e expressividade.

Palavras-chave
Concorrência; Monitores; Memória Compartilhada; Imutabilidade;

Problemas de Concorrência Clássicos; Linguagens de Programação Concor-
rentes.
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1
Introduction

During the last years, CPU core count has been steadily increasing
in mainstream computers. Along this time, many authors have discussed
the complexity of programming multicore applications, specifically as regards
avoiding race conditions in shared memory (1). However, although most
popular programming languages offer tools for shared memory programming,
be it through libraries or native language constructs, these tools largely leave
it up to the programmer to deal with race conditions.

We chose monitors as the main concept for our work because they
were designed precisely to avoid race conditions. Monitors allow concurrent
processes to share data in an orderly manner, with monitor procedures as the
only way to access shared variables (2). However, monitors were not envisioned
to coexist features of modern programming languages such as referential
semantics. In our work, we revisit the concept to allow it to maintain its
original guarantees in a programming language with references. Much of this
adaptation consisted of adding constraints to the type system that ended up
being as important as the monitors themselves.

In this dissertation, we discuss how a programming language can be
designed to guarantee the absence of race conditions in shared memory
applications. We showcase a programming language, Aria, that was designed
from scratch to use monitors and provide strong guarantees regarding data
shared among threads, so that it is possible for the compiler to enforce the
absence of data races. In order to showcase Aria’s capabilities, we provide
an implementation for two classic concurrency problems. The first of these
problems is a data structure example, while the second is more interesting in
that it illustrates how Aria’s monitors can be used to control shared access at
larger levels of granularity than that of a single function call.

We also discuss some of the limitations of the monitor model regarding
performance and expressiveness, and address those by extending the moni-
tor concept with two new features. We demonstrate the benefits of the added
features by revisiting one of the previous classic problems and providing an
example that uses a more complex data structure. We explain the compiler
implementation for the new features and monitors in detail, while also provid-
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Chapter 1. Introduction 9

ing benchmark results that measure the language’s performance.
Lastly, because we had safety as our main concern when designing Aria,

we provide a rigorous argument for the absence of data races in the language.
Ours is not a formal proof for safety in Aria, nonetheless, it serves as a solid
argument for the guarantees the language aims to provide.

Regarding how this dissertation in organized, Chapter 2 presents the
ideas behind the original monitor proposal and discusses references to the
concept in modern programming languages. Chapter 3 gives and overview of
Aria focused on its concurrency constructs alongside some examples. Chapter 4
presents the new features added to monitors and discusses the rationale behind
their design. Chapter 5 contains an in-depth explanation of the implementation
of Aria, and Chapter 6 provides performance benchmarks for monitors and the
added features. Finally, Chapter 7 argues for the absence of data races in Aria.
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2
Monitors

In this chapter, we recall the main ideas behind the original proposals
for monitors and discuss some of the references to the concept in modern
programming languages.

Notations for monitors were proposed in independent publications by
Brinch Hansen (3) and Hoare (4), with exchanges between the two authors
leading to the development of the concept (2). Monitors are a combination
of data structures and operations used to access them that can be called by
different execution flows, always under mutual exclusion. Monitors only have
access to variables within their own scope (4). Execution flows calling monitor
operations may block in condition queues under conditions specified by the
programmer.

In his personal history on Monitors and Concurrent Pascal, Brinch
Hansen states explicitly:

Race conditions are prevented by a simple scope rule that permits
a process, monitor, or class to access its own variables only. In
a suitably restricted language this rule can easily be checked by
a compiler. However, in a language with pointers and address
arithmetic, no such guarantee can be offered.

Both the scope rule and the observation about the possibility of having
the compiler check it are fundamental to our discussion.

Brinch Hansen’s proposal for monitors was closely tied to his implementa-
tion of the Concurrent Pascal (2) programming language, which was intended
for writing operating systems. The design of Concurrent Pascal did not include
references, and the compiler was able to check the scoping rule, enforcing the
absence of data races. Reading and writing shared variables occurred only
inside monitor procedures.

Nowadays, some programming languages and libraries are said to provide
monitor-like constructs because they offer the possibility of protecting func-
tions with mutual exclusion and some construct similar to a condition queue.
A rough idea of how monitors are widely perceived today can be gained from
the definition from Wikipedia (5). Monitors are described as synchronization
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Chapter 2. Monitors 11

constructs that "enable threads to have both mutual exclusion and the ability
to block depending on a given condition". The same entry offers a variant defi-
nition of a monitor as a "thread-safe class, object, or module that uses wrapped
mutual exclusion in order to safely allow access to a method or variable by
more than one thread". In these definitions, a monitor is defined in terms of
the things it can do, with disregard to the restrictions it should enforce. This
reflects a lack of understanding of the original proposal. If it were up to the
programmer to encapsulate access to shared data inside such functions, with
no support from the compiler, monitors would not ensure the absence of data
races.

In Java, for example, every Object has a lock and a condition variable
(a wait set) that can be manipulated, respectively, through the synchronized
keyword and wait, notify, and notifyAll methods. An object with that set of
capabilities by itself has often been characterized as a monitor (6). Evidently,
such “monitors” are missing a crucial feature from the original definition:
Java’s constructs do not prohibit unprotected data sharing, simply providing
programmers with a monitor-like syntax with which to code their own rules.

Besides, most mainstream languages today include references, which, as
pointed out by Brinch Hansen, make it impossible for the compiler to provide
the desired guarantees. Consider what would happen if a language tried to
provide the previously described monitor semantics while including pointers.
A given monitor could store a pointer to an integer value and provide a function
that returned this pointer. After that function is called, the caller would have
a reference to the integer value and would be able to access it without going
through the monitor. Symmetrically, a monitor could retain pointers passed
to its procedures as arguments, allowing future calls from different processes
to share variables which were not declared in the monitor’s scope.

In this dissertation, we revisit the monitor concept addressing the afore-
mentioned issues relating to references. We showcase a language designed to
enforce the absence of time-dependent programming errors, combining the orig-
inal monitor properties with modern programming language concepts.

DBD
PUC-Rio - Certificação Digital Nº 1812805/CA



3
Aria

In this chapter, we give an overview of Aria’s features and discuss how
the design of the language addresses the goals we established of combining the
original monitor guarantees with referential semantics. We also use two exam-
ples of classic concurrency problems to analyze the language’s capabilities.

3.1
Language Design

Aria has many features common to ordinary procedural languages. It
provides basic primitive types, arrays, global variables, functions, loops, if-else
statements and the like. We will discuss such familiar components only in view
of the changes we made to them to accommodate monitors and the guarantees
we aim to provide.

The aspects of interest in the language are those related to memory
sharing between threads. Aria offers two constructs for this goal, immutable
values and monitors, both allowing safe sharing. Furthermore, the language
provides a native spawn statement for creating new threads, and an unique
type to represent condition variables used by monitors for synchronization.
The next subsections discuss these constructs.

3.1.1
Immutable Values

Type systems and immutability are often used by programming languages
to enforce safety and avoid race conditions (14, 15). Aria adopts these concepts
to allow for monitors to deal with references. Immutability in Aria is built upon
immutable types and immutable variables.

Essentially, a value with an immutable type cannot be altered. Primitive
types are inherently immutable. An aggregate type can be declared immutable
by adding the Immutable qualifier to its declaration. For instance, Immutable
[Integer] declares an immutable array of integers. The Immutable quali-
fier ensures two things: First, members in the aggregate cannot be assigned;
second, members in the aggregate must be themselves immutable. For ex-
ample, Immutable [Immutable [Integer]] is a valid type, but Immutable
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Chapter 3. Aria 13

[[Integer]] is not (because it is an immutable array of mutable arrays of
integers).

Together with monitor types (to be explained next), immutable types
are called safe types. These objects can be shared among concurrent threads
with no possibility of race conditions.

Moreover, in Aria, variables can be declared either as value or variable.
A value must be defined at the same time it is declared and cannot be
reassigned. A variable can be declared without an initial value and can be
reassigned throughout the program.

Global variables are naturally shared among threads, both by direct
access by the thread code and through global functions that the threads share.
Therefore, to ensure safety, global variables must be immutable (values) and
must have safe types.

Listing 3.1 illustrates the usage of the Immutable type qualifier and the
value and variable keywords.

1 // globals must be safe values ; the Integer type
2 // is a primitive ( inherently immutable ) type.
3 value x: Integer = 10;
4

5 function main {
6 // ’a’ contains a ( mutable ) array of strings ; ’a’
7 // cannot be reassigned , because it was declared
8 // as a ’value ’.
9 value a: [ String ] = ["hello", "there"];

10

11 // however , the contents of ’a’ can be reassigned .
12 a[1] = "world";
13

14 // ’b’ has type ’Immutable [ Integer ]’, which does
15 // not need to be explicitly stated because the
16 // language infers it.
17 variable b = Immutable [1, 2, 3];
18

19 // variable ’b’ contains an immutable array , but
20 // ’b’ itself can be reassigned , because it was
21 // declared as a variable .
22 b = Immutable [3, 1, 4, 1, 5];
23

24 // these do not compile :
25 // a = [" not", "valid", "!"];
26 // b[0] = 1;
27 }

Listing 3.1: A basic overview of Aria
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3.1.2
Monitors

A monitor definition is a template for the creation of monitor instances.
Each monitor definition has a name and a block containing declarations
and/or definitions of variables and functions. We instantiate a monitor by
calling its constructor—a special function defined within the monitor with
the initializer keyword. A function inside a monitor can be declared as
private, in which case it cannot be called from outside the monitor.

A monitor ensures the following key properties:

1. All monitor objects have their functions accessed in mutual exclusion.

2. All variables declared or defined within a monitor are private to that
monitor’s code, so that it is impossible to access them from outside the
monitor.

3. All values received or returned by monitor non-private functions must
have a safe type.

4. Variables with the ConditionPool type used to represent condition
variables can only be declared inside monitors.

5. Only monitor functions are allowed to use the synchronization state-
ments signal, broadcast and wait-for-in that operate over condition
variables.

6. A monitor function cannot create new threads.

Properties 1 and 2 came straight from the original definition of monitors.
Variables inside monitors store the shared data we are trying to protect from
race conditions. Hence, they must be accessed through functions that ensure
mutual exclusion.

Property 3 deals with the “reference problem”. If data shared with and
by a monitor is always immutable, then references consumed and produced by
it are always harmless for concurrency purposes. This property is similar to
the rule about global variables.

Properties 4 and 5 will be explained in the next subsection. The last
property exists only to avoid over-complicating monitors.
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3.1.3
Condition Pools

Monitors can wait on special conditions specified by the programmer.
For this goal, Aria has condition variables, like so many other monitor
implementations. A condition variable is a pool of blocked threads waiting on
a certain condition. In Aria, a condition variable is called a ConditionPool.

Threads inside condition pools can be awoken using either the signal
or broadcast statements. A signal awakes one thread from the pool, while a
broadcast wakes all of them. However, unlike traditional conditional variables,
threads cannot be put inside a condition pool without an associated condition
being given. Aria combines the condition and the wait in a single wait-for-in
statement, as illustrated in Listing 3.2. The wait-for-in statement is built
using a simple loop enclosing a call to wait. The loop guarantees the condition
is always valid after the wait, even in face of spurious wakeups (7).

1 wait for numElems > 0 in emptyPool ;

Listing 3.2: The wait-for-in statement

As a traditional wait, the wait-for-in statement releases the mutual
exclusion during the wait. Thus, the programmer should pay attention to the
monitor’s state when using more than one wait-for-in statement inside a
function. After a second wait, the condition associated to the first one may
not be valid anymore.

3.1.4
Creating new threads

To create a new thread, Aria uses a spawn statement. This statement
specifies a block of code to run in the new thread. This block of code can access
not only global variables, but also variables declared in the blocks enclosing the
spawn statement. Again, to ensure the absence of race conditions, the variables
that a spawn accesses must be safe, that is, they must be values with a safe
type (either an immutable type or a monitor).

3.2
Using Monitors in Aria

In this section, we provide solutions for the classic bounded-buffer
and readers-writers problems. We solve the bounded-buffer problem using a
straightforward concurrent stack and the readers-writers problem with two
different approaches in which regards to safety and simplicity. Finally, we
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discuss Aria’s strengths and shortcomings when dealing with different kinds of
concurrency problems.

3.2.1
Stack

1 monitor Stack {
2 variable top = 0;
3 variable capacity : Integer ;
4 variable items: [ Integer ];
5

6 value fullPool = ConditionPool ();
7 value emptyPool = ConditionPool ();
8

9 initializer (n: Integer ) {
10 capacity = n;
11 items = [ Integer ](n);
12 }
13

14 private function full: Boolean {
15 return top == capacity ;
16 }
17

18 private function empty: Boolean {
19 return top == 0;
20 }
21

22 function push( number : Integer ) {
23 wait for not full () in fullPool ;
24 items[top] = number ;
25 top += 1;
26 signal emptyPool ;
27 }
28

29 function pop: Integer {
30 wait for not empty () in emptyPool ;
31 top -= 1;
32 signal fullPool ;
33 return items[top ];
34 }
35 }

Listing 3.3: Concurrent stack

A thread-safe stack can be implemented in Aria by a monitor with an
internal buffer, two condition pools and push/pop operations. The internal
buffer is an array of integers, with a size defined by the constructor. The
condition pools keep threads that are waiting for the not-empty and not-
full conditions. The push and pop operations are conventional, except for the
wait-for-in and signal statements.

Listing 3.3 illustrates the basic facilities of Aria monitors: private
functions (full, empty), condition pools (fullPool, emptyPool), plus the
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wait-for-in and signal statements. It is worth noting how the wait state-
ments read quite like preconditions to the corresponding functions.

Signaling in Aria is explicit. Moreover, Aria implements the Signal and
Continue policy (8). In this policy, a thread continues to execute normally
after signaling, not releasing the monitor to the signaled thread. The signaled
thread(s) is moved from the condition pool to the monitor’s mutual-exclusion
queue, possibly competing with other threads to enter the monitor after the
signaling thread exits. Without this policy, the function pop in the stack
example would be incorrect.

Listing 3.4 illustrates the use of the Stack monitor. Line 2 creates the
monitor by calling its initializer. Lines 3 and 8 create two new threads. Lines
5 and 10 contain calls to stack.push and stack.pop. The programmer must
be aware that these calls may block if other threads are accessing the monitor
or if the wait-for-in conditions are not met. Apart from that, the use of the
concurrent safe stack is similar to that of a plain stack data structure.

1 function main {
2 value stack = Stack (10);
3 spawn {
4 while true {
5 stack.push( randomInteger ());
6 }
7 }
8 spawn {
9 while true {

10 print(stack.pop ());
11 }
12 }
13 }

Listing 3.4: Using the concurrent stack

For this kind of problem, Aria’s monitors provide a simple and direct
approach for programmers. Basically, since the problem can be modeled as a
single monitor, no other elaborate abstractions are necessary. However, this
is only possible because the stack’s operations are always mutually exclusive.
In some scenarios, we may want to synchronize access without necessarily
imposing mutual exclusion. Clearly, we cannot solve these scenarios with a
single monitor. This kind of situation is covered in the next example, the
readers-writer lock.
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3.2.2
RWLock

The basic readers-writers problem refers to the situation in which two
kinds of threads need to access a shared resource. Readers can read (access
the shared resource) simultaneously with other readers, as long as no one is
writing. Writers must write in mutual exclusion with any other thread, either
reader or writer. The classic solution to this problem (4) is built upon four basic
functions: startReading, stopReading, startWriting, and stopWriting. A
RWLock monitor provides this set of functions to coordinate actions of readers
and writers.

Listing 3.5 shows the RWLock monitor implemented in Aria. This mon-
itor uses two internal variables to account for readers/writers state: variable
readers holds the number of current readers and variable writing indicates
whether any thread is currently writing. The condition pools readersPool
and writersPool maintain respectively waiting readers and writers. The
startReading and startWriting functions wait on their respective con-
ditions and change the monitor’s inner state. Functions stopReading and
stopWriting undo whatever their counterparts did and signal on one or both
condition pools when appropriate. This implementation gives priority to read-
ers and can lead to writers starvation. A version giving priority to writers
can easily be implemented by creating a counter waitingWriters for waiting
writers and adding the condition (waitingWriters == 0) to startReading’s
wait-for-in statement, in line 15.

In this solution for the readers-writers problem, the monitor acts purely
as a synchronization construct. Ideally, we would like a single object to
encapsulate functions read and write with appropriate synchronization, but
we cannot put these functions inside a monitor because we do not want readers
to be mutually exclusive. This limitation of the monitor construct requires the
programmer to explicitly manage two separate objects—the synchronization
monitor and the shared resource—at each read and write request. If the
synchronization functions are called in the wrong order, or not called at all,
we lose the reader/writer policy over the shared resource.

To show how Aria allows us to compose monitors in order to build
higher-level synchronization policies, we will present another implementation
for the readers-writers problem that strongly couples a RW lock with a shared
resource.
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3.2.3
ReadersWriters

In this solution for the readers-writers problem, we will use a thread-safe
integer array as the resource to be safely shared among readers and writers.
Although each individual operation on such an array is already thread-safe,
we can interpret a writer as a thread that needs to make a set of changes
atomically. We want to make sure that a thread can only access the array
after the startReading/startWriting functions are called, and that the
thread won’t be able to access it after it calls stopReading/stopWriting. To
guarantee this, the ReadersWriters monitor will handle access permissions
over the integer array, and the integer array will require valid permissions to
be accessed.

1 monitor RWLock {
2 variable readers = 0;
3 variable writing = false;
4

5 value readersPool = ConditionPool ();
6 value writersPool = ConditionPool ();
7

8 initializer { /* empty */ }
9

10 private function canWrite : Boolean {
11 return not writing and readers == 0;
12 }
13

14 function startReading {
15 wait for not writing in readersPool ;
16 readers += 1;
17 }
18

19 function stopReading {
20 readers -= 1;
21 if readers == 0 {
22 signal writersPool ;
23 }
24 }
25

26 function startWriting {
27 wait for canWrite () in writersPool ;
28 writing = true;
29 }
30

31 function stopWriting {
32 writing = false;
33 signal writersPool ;
34 broadcast readersPool ;
35 }
36 }

Listing 3.5: RWLock
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Our code will represent permissions by tokens, which are unique objects.
The semantics of Aria dictates that each new created object is different from
all other objects, so a thread cannot forge a token.1

The Resource monitor in Listing 3.6 implements our thread-safe con-
tents. This monitor has two arrays, declared in lines 5 and 6, that hold
the tokens authorized for reading and writing. (Because only one writer can
write at a time, we could have provided a single boolean variable to hold
the writing token. However, this piece of synchronization logic belongs to the
ReadersWriters monitor and, therefore, the Resource monitor should be neu-
tral to this logic.)

The get and set operations are always called with a token as their last
arguments. If the provided token is not authorized, the call fails. To ensure that
only the ReadersWriters monitor can manage the authorized tokens, our code
uses a master token. This master token is given to the Resource monitor upon
its creation (see line 11), and it is required in all calls to functions allow and
disallow, which change the lists of valid tokens (see lines 22 and 33).

Listing 3.7 shows the ReadersWriters monitor, which encapsulates the
shared resource. Function newToken, in line 4, creates a token as an unique
value. The monitor initializer, in line 11, creates the shared resource, defining
the master token. From then on, a call to getResource returns the integer
array, but the start and stop functions must also be called by any thread
wishing to access this array. The start functions provide valid tokens without
which access to the shared resource is not possible.

The function spawnWriter (Listing 3.8) illustrates how the Resource
and ReadersWriters monitors are used together.

The start and stop functions lock the Resource monitor when manag-
ing token permissions. Because the get function operates over a single element
of the array, access to the Resource monitor is highly disputed when reading.
Therefore, the startReading and stopReading functions can be delayed while
trying to call the allow/disallow functions. This delay can be minimized by
making the get function return more than one element of the array at a time.

This example has shown how monitors under Aria’s language restrictions
can be composed to create synchronization at different granularities. However,
this implementation is not completely safe. Tokens could be shared between
threads, since they are immutable, leading to the same problems that the
RWLock presented. Although this requires a more active role of the programmer
in bypassing safety restrictions, it is still not in line with the guarantees we

1The implementation uses an array of one boolean for tokens (see line 1 in Listing 3.6);
they are the smallest objects that can be created in Aria.
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desire to provide. Besides, the code required for a relatively simple task is rather
complex. In Chapter 4 we address the safety, performance, and complexity
issues of this problem again.

3.2.4
Analysis

In the previous examples, we provided three implementations for classic
concurrency problems. Analyzing these and other examples (9), we arrived at
some usage patterns, which we discuss here.

The Stack monitor falls into the Data Structure (DS) category. Basically,
any concurrency problem that requires mutual exclusion in the access to a
single data structure works well with Aria’s monitors. Monitor operations
fit perfectly as concurrency-safe wrappers for data structures. This category
includes countless variations of the producer-consumer problems (10) (from
which our stack example derives).

The RWLock represents a Synchronization Mechanism (SM). This cate-
gory does not provide functions that externalize a shared resource, providing
instead operations that can be used to coordinate actions over shared resources
such as DS monitors or system files. Lower-level concurrency mechanisms, such
as semaphores and barriers, can also be implemented as SM monitors.

The ReadersWriters monitor is a complete implementation for the
readers-writers problem. However, it is also a more complex engineering
solution. We call such monitors Hybrid Solutions (HS), because they are a
problem-oriented amalgamation of DS and SM monitors. As pointed out in
subsections 3.2.2 and 3.2.3, hybrid monitors guarantee correct access to shared
resources, instead of leaving up to programmers the coordination of calls to DS
and SM monitors. However, HS monitors are not straightforward to develop,
and they may introduce permission complexity in the DS monitor code.

This is only a loose categorization. Not all problems fall into these
categories perfectly, and sometimes a problem can be implemented within more
than one category (as seen with the readers-writers problem). Nevertheless,
this classification is useful for reflecting upon different types of concurrency
problems and monitor properties.

After looking at concurrency problems using this classification, we gained
some insights regarding the drawbacks of designing a language with monitors
strictly as they were originally proposed. The next chapter explores the
addition of new constructs to the monitor concept inspired by the shortcomings
of the model discussed so far.

DBD
PUC-Rio - Certificação Digital Nº 1812805/CA



Chapter 3. Aria 22

1 alias Token = Immutable [ Boolean ];
2

3 monitor Resource {
4 variable master : Token;
5 variable readingTokens = [Token ](100) ;
6 variable writingTokens = [Token ](100) ;
7

8 variable items: [ Integer ];
9 variable size: Integer ;

10

11 initializer (token: Token , n: Integer ) {
12 master = token;
13 items = [ Integer ](n);
14 size = n;
15 for i in [0 -> n] {
16 items[i] = 0;
17 }
18 }
19

20 function getSize : Integer { return size; }
21

22 function allow( isWrite : Boolean , mTk , tk: Token) {
23 if master != mTk {
24 error(" invalid master token");
25 }
26 if isWrite {
27 writingTokens . append (tk);
28 } else {
29 readingTokens . append (tk);
30 }
31 }
32

33 function disallow ( isWrite : Boolean , mTk , tk: Token) {
34 <similar to "allow", but uses "remove" instead of "append">
35 }
36

37 function get(index: Integer , token: Token): Integer {
38 if not readingTokens . contains (token) {
39 error(" invalid reading token");
40 }
41 return items[index ];
42 }
43

44 function set(index , item: Integer , token: Token) {
45 if not writingTokens . contains (token) {
46 error(" invalid writing token");
47 }
48 items[index] = item;
49 }
50 }

Listing 3.6: Resource
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1 monitor ReadersWriters {
2 <variables and values from RWLock>
3

4 private function newToken : Token {
5 return Token (1);
6 }
7

8 value master : Token = newToken ();
9 variable resource : Resource ;

10

11 initializer ( arraySize : Integer ) {
12 resource = Resource (master , arraySize );
13 }
14

15 function getResource : Resource {
16 return resource ;
17 }
18

19 function startReading : Token {
20 <code from RWLock startReading>
21 value token = newToken ();
22 resource .allow(false , master , token);
23 return token
24 }
25

26 function stopReading (token: Token) {
27 resource . disallow (false , master , token );
28 <code from RWLock stopReading>
29 }
30

31 function startWriting : Token {
32 <code from RWLock startWriting>
33 value token = newToken ();
34 resource .allow(true , master , token);
35 return token;
36 }
37

38 function stopWriting (token: Token) {
39 resource . disallow (true , master , token);
40 <code from RWLock stopWriting>
41 }
42 }

Listing 3.7: ReadersWriters

DBD
PUC-Rio - Certificação Digital Nº 1812805/CA



Chapter 3. Aria 24

1 function spawnWriter (rw: ReadersWriters ) {
2 value array = rw. getResource ();
3 value size = array. getSize ();
4 spawn {
5 value token = rw. startWriting ();
6 for i in [0 -> size] {
7 value number = i * 5;
8 array.set(i, number , token);
9 }

10 rw. stopWriting (token);
11 }
12 }

Listing 3.8: A function that spawns a new writer
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4
Extending Monitors

In this chapter, we present additions that were made to Aria in order
to deal with issues from the original monitor proposal regarding performance
and expressiveness. These extensions do not break any of the previously stated
rules from monitors, and their usage does not alter the core features presented
so far. The issues are:

Issue 1 Constantly acquiring and releasing locks from monitors dramatically
hinders performance for a lot of basic use cases. For example, consider a
monitor encapsulating an array of integers, with basic size, get and set
functions. Iterating over such an array will be slow, because the monitor
will be locked and unlocked with each call to get/set.

Issue 2 HS monitors are complex in nature. Furthermore, they force high
coupling and high cohesion solutions. We would like the language to
allow for low (or lower) coupling and high cohesion solutions. This issue
encompasses the composability problems mentioned in subsection 3.2.3
when using monitors to synchronize access to other monitors.

We added two language features to deal with these issues: unlocked
monitors and scoped values.

4.1
Unlocked Monitors

In Aria, every monitor has a mutual exclusion lock that synchronizes
access to its methods. Usually, the lock is acquired then released each time
a method is called, which causes the problem described in Issue 1. An
unlocked monitor, however, does not lock and unlock when its methods are
called.

Aria distinguishes regular from unlocked monitors through the Unlocked
type qualifier. Listing 4.1 illustrates how unlocked monitors can be used to
solve precisely the problem of Issue 1. In the example, the Array monitor
encapsulates an array of integers with basic size, get and set methods. The
printArray function receives an Unlocked monitor and prints its elements.
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Since the call in line 4 won’t demand a lock, the function will be able to
iterate through the array without the overhead of constant locking.

1 function printArray (array: Unlocked Array) {
2 value size = array.size ();
3 for i in [0 -> size] {
4 print(array.get(i));
5 }
6 }

Listing 4.1: Using unlocked monitors

As we will explain next, unlocked monitors do not break Property 1
from monitors regarding mutual exclusion. However, unlike regular monitors,
unlocked monitors are not safe. Hence, the language statically enforces they
cannot be shared between threads.

4.2
Scoped values

Unlocked monitors are created using the acquire-value statement, that
simultaneously defines an unlocked monitor and links it to a block of code.
Unlocked monitors are valid only while within the block of code with which
they were created. Attempts to use unlocked monitors outside their designated
blocks cause an error. For this reason, we also refer to unlocked monitors as
scoped values.

An acquire-value statement (explicitly) calls an acquire method and
(implicitly) calls a release method. Two monitor methods form an acquire-
release pair of methods if they obey the following rules:

1. An acquire-release pair of methods must always be declared together
using the same name and the acquire/release keywords. One cannot
declare an acquire function without declaring its release counterpart,
and vice-versa, as seen in Listing 4.2 (lines 5 and 6).

2. An acquire method must always return a monitor value.

3. An acquire method can only be called through the acquire-value
statement (line 10).

4. A release method cannot be called directly by the programmer, instead
being implicitly invoked at the end of the acquire-value statement
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that called its acquire counterpart1. In the example from Listing 4.2,
release-foo is called in line 12.

1 monitor N { <...> }
2

3 monitor M {
4 <other variables and functions from monitor M>
5 function acquire foo: N { <...> }
6 function release foo { <...> }
7 }
8

9 function main {
10 acquire value n: Unlocked N = m.foo () {
11 <...>
12 }
13 }

Listing 4.2: Using scoped values

Note that, despite acquire-foo returning a monitor of type N (line 5), the
scoped value n has type Unlocked N (line 10). The acquire-value statement
converts the returned value into an unlocked monitor. It locks the monitor at
the end of line 5, and unlocks it in line 12 before release-foo is called.

Listing 4.3 exemplifies the usage of an invalid scoped value. As previously
stated, scoped values are only valid while inside their designated block.
Attempts to escape the scoped value from its block (line 4) are not allowed
by the language. Therefore, using an escaped value (line 6) causes a runtime
error.

1 variable cheater : Unlocked N;
2 acquire value n = m.foo () {
3 n. doSomething ();
4 cheater = n;
5 }
6 cheater . doSomething (); // error

Listing 4.3: Invalid usage of scoped values

Monitors in Aria natively posses a predefined acquire-release pair of
methods called unlocked, as illustrated in Listing 4.4. These methods serve as
a way to acquire the unlocked version of a monitor and nothing else. Despite
its name and function, the acquire-unlocked method called in line 2 returns

1As a special rule, a syntax block delimited by an acquire-value statement may
not contain a return statement. This rule avoids complicating the implementation of the
acquire-value statement when ensuring a release function will always be called after its
acquire.
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the monitor m of type Array, not Unlocked Array. As previously discussed, it
is the acquire-value statement that converts m to Unlocked when defining
the array value.

1 value m = Array (10);
2 acquire value array: Unlocked Array = m. unlocked () {
3 printArray (array);
4 }

Listing 4.4: The unlocked acquire-release pair of methods

Finally, the ability to unlock monitors is a powerful feature, as it allows a
function from outside the monitor to extend its functionalities. It also provides
a way to freely acquire a monitor’s mutual exclusion, without necessarily doing
anything with it. Therefore, this feature must be used with caution. Ideally,
the least necessary amount of code will be executed inside a monitor’s critical
region, and that must be kept in mind when unlocking a monitor.

4.3
Examples

In this section, we provide a safer and cleaner implementation for the
readers-writers problem using the concept of scoped permissions. Lastly, we
implement a parallel hash table data structure to demonstrate the flexibility
of the new features.

4.3.1
Scoped Permissions

Scoped permissions are used to model permissions valid only while within
the block of code for which they were created. We can create scoped permissions
by combining scoped values and interfaces. This concept allows us to naturally
model permissions in Aria, instead of using tokens as in subsection 3.2.3.

An interface in Aria defines a set of functions. Similar to interfaces from
object-oriented languages, a monitor must implement these functions if it
wishes to comply with the interface. Listing 4.5 illustrates the declaration
of interfaces (lines 1 and 5). As seen in line 9, a monitor must explicitly state
its compliance with an interface.

The RW monitor revisits the previously discussed readers-writers problem
and implements the read and write permissions using acquire-release pairs of
functions. The Resource monitor simply encapsulates an array, providing basic
get and set operations while being free of any kind of permission logic. The
resource held by the RW monitor is cast as a ReadResource or WriteResource
before being returned (lines 21 and 30), ensuring only the right operations are
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visible to the caller. This is in line with the safety guarantees that the original
monitor proposals seek to provide.

This solution for the readers-writer problem ensures safety and is also
cleaner when compared to the solutions provided in subsections 3.2.2 and
3.2.3. Cleaner because permission logic is more elegantly expressed, and safe
because the language ensures the correct operations are going to be accessible
strictly during the period for which the correspondent permissions are held.
In summary, the new feature allows for low coupling and high cohesion
constructions without sacrificing safety, addressing the problem described in
Issue 2 regarding composability.

4.3.2
Hash Tables

In this subsection, we present a scalable parallel implementation of hash
tables using Aria’s monitors. For a basic hash table, we are going to use
the HashTable and Bucket monitors shown in Listing 4.6 and Listing 4.7,
respectively. The HashTable monitor has an array of buckets, and each bucket
is associated with a hashed value. The Bucket monitor has a list of key-value
pairs. In order to get or set the value associated with a key, one must first
get the associated bucket as a scoped value. The hash table must be accessed
through the get and set functions in lines 43 and 51, respectively.

This implementation is simple in that the hash table is just an array of
monitors. Furthermore, functions from HashTable and Bucket are intention-
ally not executed under the same lock. The operations in the bucket acquire-
release pair of function are elementary, therefore, the HashTable’s lock is held
briefly (unless rehashing is taking place). High parallelism can be achieved
because many threads can be working with different buckets simultaneously.

A "stop-the-world" rehashing function can be easily implemented us-
ing condition queues and wait-for-in/signal/broadcast statements. Since
buckets are scoped values, we can guarantee no previously acquired bucket will
be used after rehashing has started.

The fact that each bucket is a monitor leads to too many mutexes being
created. An alternative two-layer approach could be devised by having one
intermediate monitor supervise N buckets. For example, if the hash table has
1000 buckets and N is 10, then 100 intermediate monitors would be created.
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4.3.3
Analysis

The RW and HashTable monitors are HS monitors, as defined in subsec-
tion 3.2.4. Both monitors coordinate access to a DS monitor (resource and
bucket), imposing some kind of access logic (controlling, respectively, permis-
sioning and rehashing). With scoped values, it becomes impossible to use the
controlled resource in an unsafe manner, and the code for providing this access
logic becomes simpler.

The combination of scoped values and unlocked monitors allows Aria to
address issues of performance and expressiveness that are sometimes ascribed
to the monitor concurrency model. These mechanisms allow the programmer to
compose operations on monitors, controlling the scope of locking and creating
abstractions that maintain the compile-time guarantees against data races.

Scoped values are useful in cases where the programmer needs the
language to provide an extra level of guarantees. HS monitors, because of their
nature of mixing synchronization and data access, are always going to need
extra guarantees the monitor concept alone does not provide. Hence, scoped
values are useful to cover common use cases monitors didn’t previously address
or addressed poorly.
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1 interface ReadResource {
2 function get(index: Integer ): Integer ;
3 }
4

5 interface WriteResource {
6 function set(index , item: Integer );
7 }
8

9 monitor Resource : ReadResource , WriteResource { <...> }
10

11 monitor RW {
12 <variables from RWLock>
13

14 variable resource : Resource ;
15 initializer (r: Resource ) {
16 resource = r;
17 }
18

19 function acquire read: ReadResource {
20 <code from RWLock startReading>
21 return resource as ReadResource ;
22 }
23

24 function release read {
25 <code from RWLock stopReading>
26 }
27

28 function acquire write: WriteResource {
29 <code from RWLock startWriting>
30 return resource as WriteResource ;
31 }
32

33 function release write {
34 <code from RWLock stopWriting>
35 }
36 }
37

38 function usage(rw: RW) {
39 acquire value resource = rw.write () {
40 resource .set (0, 10);
41 }
42 }

Listing 4.5: Revisiting the readers-writer problem
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1 alias K = String ;
2 alias V = Integer ;
3

4 monitor HashTable {
5 value n = 100;
6 variable buckets = [ Bucket ](n);
7

8 value rehashingPool = ConditionPool ();
9 value bucketsPool = ConditionPool ();

10 variable counter = 0; // acquired buckets
11 variable rehashing = false;
12

13 initializer {
14 for i in [0 -> n] {
15 buckets [i] = Bucket ();
16 }
17 }
18

19 function acquire bucket (key: K): Bucket {
20 wait for not rehashing in rehashingPool ;
21 counter += 1;
22 return buckets [hash(key)];
23 }
24

25 function release bucket {
26 counter -= 1;
27 if rehashing and counter == 0 {
28 signal bucketsPool ;
29 }
30 }
31

32 function rehash {
33 rehashing = true;
34 wait for counter == 0 in bucketsPool ;
35 <rehash logic>
36 rehashing = false;
37 broadcast rehashingPool ;
38 }
39 }
40

41 // usage functions
42

43 function get(ht: HashTable , k: K): V {
44 variable v: V;
45 acquire value bucket = ht. bucket (k) {
46 v = bucket .get(k);
47 }
48 return v;
49 }
50

51 function set(ht: HashTable , k: K, v: V) {
52 acquire value bucket = ht. bucket (k) {
53 bucket .set(k, v);
54 }
55 }

Listing 4.6: HashTable
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1 record KV {
2 value k: K;
3 variable v: V;
4 variable next: KV;
5 }
6

7 monitor Bucket {
8 variable list: KV;
9

10 initializer { /* empty */ }
11

12 function get(k: K): V {
13 variable node = list;
14 while node != nil {
15 if k == node.k {
16 return node.v;
17 }
18 node = node.next;
19 }
20 return nil;
21 }
22

23 function set(k: K, v: V) {
24 if list == nil {
25 list = KV(k, v, nil);
26 return ;
27 }
28

29 variable previous : KV;
30 variable node = list;
31 while node != nil {
32 if k == node.k {
33 node.v = v;
34 return ;
35 }
36 previous = node;
37 node = node.next;
38 }
39 previous .next = KV(k, v, nil);
40 }
41 }

Listing 4.7: Bucket
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5
Compiler Implementation

In this chapter, we discuss the implementation of both regular and
unlocked monitors. We will not focus on Aria’s type system and other semantic
rules because they are trivially checked and enforced during compilation.

A compiler for Aria is available at github.com/renan061/aria, ver-
sion 0-2. The compiler uses standard compiler techniques and tools, such as
Lex, Yacc, and LLVM.

We use pthreads to implement the language’s concurrency features, but
any other API or library that provides thread creation, mutexes, and condition
variables could easily be used instead.

5.1
Implementing regular monitors

The Aria compiler declares a monitor structure in LLVM for each monitor
definition in Aria. A monitor structure contains a mutex and a virtual method
table (vtable), plus all monitor variables defined by the programmer.

1 monitor Counter {
2 variable a: Integer ;
3 initializer (n: Integer ) { a = n; }
4 function increment { a += 1; }
5 }

1 %Counter = type { i8*, [3 x i8 *]* , i32 }
2
3 @Counter -L- vtable = global [3 x i8 *] undef
4
5 define i8* @Counter - initializer (i32) { <...> }
6 define void @Counter - vtable () { <...> }

Listing 5.1: LLVM representation of a monitor

Listing 5.1 shows the Counter monitor in Aria and the %Counter
structure in LLVM. The first field of the structure is a reference to the monitor’s
mutex. This field has type i8*, which is a general pointer type in LLVM. The
second field is a reference to the global variable @Counter-L-vtable (line 3),
a vtable with three pointers [3 x i8*] that contains the natively provided
acquire-unlocked and release-unlocked functions, and the user provided
increment function. @Counter-L-vtable is allocated and initialized once by
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the @Counter-vtable function (line 6) invoked at the beginning of program
execution. The last field in the structure represents the variable a; the i32
type represents a standard integer.

The global function @Counter-initializer (line 5) implements the
monitor’s constructor. It uses pthread_mutex_init and @Counter-L-vtable
to create new %Counter objects.

The Aria compiler also creates two functions in LLVM for each non-
private method in a monitor, the R (regular) and L (locking) versions of the
method.

R-functions are straightforward translations from methods in Aria to
their LLVM representations. They are invoked by their associated L-functions.
Listing 5.2 shows the function @increment-R, compiled from the increment
method from the Counter monitor. We reify methods as functions with an
additional first parameter representing the self reference, as conventional.
(Also, in this and in all LLVM code examples where applicable, we will write
the LLVM instruction getelementptr as gep, in order to avoid breaking lines
and improve code readability.)

1 define void @increment -R(i8 *) {
2 entry :
3 ; casts the `self ` parameter to the proper type
4 %self = bitcast i8* %0 to %Counter *
5 ; gets the address of `self.a`
6 %aptr = gep %Counter , %Counter * %self , i32 0, i32 2
7 ; loads the contents of `self.a`
8 %a1 = load i32 , i32* %aptr
9 ; increments the value of `self.a`

10 %a2 = add i32 %a1 , 1
11 ; stores the incremented value back in memory
12 store i32 %a2 , i32* %aptr
13 ret void
14 }

Listing 5.2: Regular version of function increment

Calls to methods from regular (not unlocked) monitors are translated to
invocations of L-functions. As we can see in Listing 5.3, this type of function
loads the monitor’s mutex from the self reference (line 5), locks the mutex
(line 6), invokes the associated R-function (line 7), unlocks the mutex (line 8),
and returns the value originally returned by the R-function, if any (line 9).
Note that lines 6 and 8 enforce that the R-function is invoked while the mutual
exclusion lock is being held.
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1 define void @increment -L(i8 *) {
2 entry :
3 %self = bitcast i8* %0 to %Counter *
4 %mtxptr = gep %Counter , %Counter * %self , i32 0, i32 0
5 %mtx = load i8*, i8 ** %mtxptr
6 %t1 = call i32 @pthread_mutex_lock (i8* %mtx)
7 call void @increment -R(i8* %0)
8 %t2 = call i32 @pthread_mutex_unlock (i8* %mtx)
9 ret void

10 }

Listing 5.3: Locking version of function increment

To wrap up this section, Listing 5.4 illustrates a call to the increment
method, provided by Counter, from the main function. First, we initialize the
monitor’s vtable (line 4) and call a constructor to create the monitor object
(lines 6 and 7). We then retrieve the reference to increment from the vtable
(lines 9, 10, and 12) and load the function while casting it to the correct type
(lines 13 and 14). Finally, the function is called (line 16).

1 define void @main () {
2 entry :
3 ; allocates and initializes Counter 's vtables
4 call void @Counter - vtable ()
5 ; calls the constructor
6 %c1 = call i8* @Counter - initializer (i32 5)
7 %c2 = bitcast i8* %c1 to %Counter *
8 ; retrieves Counter 's L- vtable
9 %vtableptr = gep %Counter , %Counter * %c2 , i32 0, i32 1

10 %vtable = load [3 x i8 *]* , [3 x i8 *]** %vtableptr
11 ; retrieves the `increment ` function
12 %fptr = gep [3 x i8*], [3 x i8 *]* %vtable , i32 0, i32 2
13 %f1 = load i8*, i8 ** %fptr
14 %f2 = bitcast i8* %f1 to void (i8 *)*
15 ; calls the function
16 call void %f2(i8* %c1)
17 ret void
18 }

Listing 5.4: Calling the increment method

5.2
Implementing unlocked monitors

Unlocked monitors are scoped values acquired through the
acquire-value statement. Methods from unlocked monitors do not lock
or unlock the mutex. Also, unlocked monitors are not safe values and cannot
be shared among threads.

The implementation of unlocked monitors must enforce that
acquire-value statements properly lock and unlock monitors, and that
scoped values won’t escape their scope. This last property cannot be verified

DBD
PUC-Rio - Certificação Digital Nº 1812805/CA



Chapter 5. Compiler Implementation 37

at compile time, as scoped values can be assigned to other memory locations
and become untraceable in our current type system. An extended type system
that detects such cases could be developed, at the cost of increasing code
complexity to the programmer, which we want to avoid. For this reason, we
implement runtime scoped value validation. We address the cost of runtime
checking and possible optimizations later in this section.

We will use proxy structures to represent unlocked monitors. Each proxy
structure wraps a monitor structure. A proxy object is valid while the program
is inside its acquire-value statement, and invalid otherwise. Proxies invoke
special functions that do not lock or unlock the monitor. Instead, they check
whether the proxy is valid, that is, the wrapped monitor is locked. If so, the
associated R-function is invoked; otherwise, the program raises a runtime error.
We will explain these constructions in detail next.

1 %Counter -P = type { i8*, [3 x i8 *]* , i1 }
2

3 @Counter -P- vtable = global [3 x i8 *] undef

Listing 5.5: Implementation of the proxy structure

Listing 5.5 shows the proxy structure %Counter-P for the Counter
monitor in LLVM. The first field of the structure is a reference to the
associated monitor object. The second field is a reference to the global variable
@Counter-P-vtable (line 3), a vtable that contains the P (proxy) versions of
the monitor’s methods. @Counter-P-vtable is allocated and initialized once,
alongside @Counter-L-vtable, at the beginning of program execution. The
last field in the structure represents a boolean variable ok (with type i1) that
indicates whether the proxy is valid.

1 define void @increment -P(i8 *) {
2 entry :
3 %proxy = bitcast i8* %0 to %Counter -P*
4 %okptr = gep %Counter -P, %Counter -P* %proxy , i32 0, i32 2
5 %ok = load i1 , i1* %okptr
6 %bool = icmp eq i1 %ok , true
7 br i1 %bool , label %if -ok , label %if - error
8 if -ok:
9 %selfp = gep %Counter -P, %Counter -P* %proxy , i32 0, i32 0

10 %self = load i8*, i8 ** %selfp
11 call void @increment -R(i8* %self )
12 ret void
13 if - error :
14 call void @raise - error ()
15 unreachable
16 }

Listing 5.6: Proxy version of function increment

Calls to methods are translated into invocations of P-functions, which
do not lock or unlock the mutex. A P-function receives as an argument a
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proxy structure (%Counter-P), instead of a monitor structure (%Counter). As
Listing 5.6 illustrates, this function checks whether the ok field of the proxy
object is true (lines 4 to 7). If so, it calls the associated R-function (lines 9
to 11), otherwise, it raises an error (line 14). Thus, we guarantee the R-function
will only be called if the proxy is valid (ok is true), else the program contains
an error detected during runtime and its execution is (rightfully) interrupted.

Listing 5.7 illustrates the implementation of the acquire-value state-
ment using the Counter monitor and its unlocked acquire-release methods.
The implementation of the acquire-unlocked method returns a regular mon-
itor, while the acquire-value statement locks/unlocks the monitor and man-
ages the proxy object. The code in Listing 5.7 contains the following steps:

1. The program calls the acquire method, which returns a scoped value (a
monitor structure).

2. The proxy is created.

(a) The monitor structure returned by the acquire function is stored
in the proxy.

(b) The proxy is initialized with its P-vtable.

(c) The ok variable from the proxy is set to true.

3. The scoped value’s mutex is acquired.

4. Instructions from the acquire-value block are executed.

5. The ok variable from the proxy is set to false.

6. The scoped value’s mutex is released.

7. The release method is called.

Remember that, despite its name, the acquire-unlocked method does
not return an unlocked scoped value, neither do any user provided acquire-
release methods. Mutual exclusion in unlocked monitors is enforced by
acquire-value statements through steps 3 and 6. In summary, acquire func-
tions produce scoped values to be unlocked by acquire-value statements.

Note also that the monitor providing the acquire-unlocked function
and the monitor returned by it are the same, which is not always the case
for acquire functions. In Listing 4.5, for example, the RW monitor returns
a Resource monitor when acquire-read is called. Thus, the acquire-value
statement must necessarily unlock the acquired monitor. If acquire-unlocked
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1 value c = Counter (5);
2 acquire value uc = c. unlocked () { uc. increment (); }

1 define void @main () {
2 entry :
3 call void @Counter - vtable ()
4 ; %c1 => type i8*
5 ; %c2 => type %Counter *
6 %c1 = call i8* @Counter - initializer (i32 5)
7 %c2 = bitcast i8* %c1 to %Counter *
8 ; (1) calls %c 's `acquire unlocked ` function
9 %Lptr = gep %Counter , %Counter * %c2 , i32 0, i32 1

10 %Lvtable = load [3 x i8 *]* , [3 x i8 *]** %Lptr
11 %acqptr = gep [3 x i8*], [3 x i8 *]* %Lvtable , i32 0, i32 0
12 %acq1 = load i8*, i8 ** %acqptr
13 %acq2 = bitcast i8* %acq1 to i8* (i8 *)*
14 ; scoped value
15 %sv1 = call i8* %acq2 (i8* %c1) ; type i8*
16 %sv2 = bitcast i8* %sv1 to %Counter * ; type %Counter *
17 ; (2) creates the proxy structure object
18 %malloc = tail call i8* @malloc (<...>)
19 %proxy = bitcast i8* %malloc to %Counter -P*
20 ; (2a) stores the scoped value in the proxy
21 %p1 = gep %Counter -P, %Counter -P* %proxy , i32 0, i32 0
22 store i8* %sv1 , i8 ** %p1
23 ; (2b) stores P- vtable in the proxy
24 %p2 = gep %Counter -P, %Counter -P* %proxy , i32 0, i32 1
25 store [3 x i8 *]* @Counter -P-vtable , [3 x i8 *]** %p2
26 ; (2c) proxy .ok = true
27 %p3 = gep %Counter -P, %Counter -P* %proxy , i32 0, i32 2
28 store i1 true , i1* %p3
29 ; (3) calls `pthread_mutex_lock `
30 %mtxptr = gep %Counter , %Counter * %sv2 , i32 0, i32 0
31 %mtx = load i8*, i8 ** %mtxptr
32 %t1 = call i32 @pthread_mutex_lock (i8* %mtx)
33 ; (4) executes instructions from the acquire - value block
34 %Pptr = gep %Counter -P, %Counter -P* %proxy , i32 0, i32 1
35 %Pvtable = load [3 x i8 *]* , [3 x i8 *]** %Pptr
36 %fptr = gep [3 x i8*], [3 x i8 *]* %Pvtable , i32 0, i32 2
37 %f1 = load i8*, i8 ** %fptr
38 %f2 = bitcast i8* %f1 to void (i8 *)*
39 call void %f2(i8* %proxy )
40 ; (5) proxy .ok = false
41 store i1 false , i1* %p3
42 ; (6) calls `pthread_mutex_unlock `
43 %t2 = call i32 @pthread_mutex_unlock (i8* %mtx)
44 ; (7) calls %c 's `release unlocked ` function
45 %relptr = gep [3 x i8*], [3 x i8 *]* %Lvtable , i32 0, i32 1
46 %rel1 = load i8*, i8 ** %relptr
47 %rel2 = bitcast i8* %rel1 to void (i8 *)*
48 call void %rel2 (i8* %c1)
49 ret void
50 }

Listing 5.7: Implementation of the acquire-value statement
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also unlocked the monitor, calling unlocked through the acquire-value
statement would repeatedly lock and unlock the same mutex unnecessarily:
first in step 1 when calling the acquire function, again in steps 3 and 6, and
lastly in step 7. Our implementation guarantees the mutex is only handled
once. Exceptionally, L versions of acquire-unlocked and release-unlocked
methods do not lock/unlock the mutex. The former simply returns the self
reference and the latter does nothing.

This implementation guarantees that using scoped values after their
intended lifespan always causes a runtime error. Also, when combined with
L-functions, it enforces monitor methods will abide with the original proposal
and always be called in mutual exclusion.

5.3
Optimizations & Performance

As an important optimization, the compiler can evaluate the possibility
of a scoped value escaping its block. It can look at the usage of the value,
checking whether it is assigned to a variable outside its scope or passed to a
function as an argument. If neither of these actions occur, the scoped value
cannot escape and, therefore, the compiler does not need to insert code for
runtime checking.

Regarding performance, the benefits of using scoped values and unlocked
monitors are clear: monitors can be accessed without constant locking. How-
ever, runtime checks for scoped values impose penalties over the originally
statically checked monitor rules. We believe in most cases it will be possi-
ble for the compiler to use the previously discussed optimization and avoid
inserting runtime checks.

DBD
PUC-Rio - Certificação Digital Nº 1812805/CA



6
Performance

In this chapter, we measure the performance of Aria programs in different
scenarios in order to evaluate our compiler implementation, the overhead of
using monitors, and the possible gains obtained from using unlocked monitors.

We ran our benchmarks in a computer with an Intel Core I7-6700K
4.0 GHz CPU and 16 GB of DDR4 2133MHz RAM. In total, this machine
has 4 CPU cores and 8 threads.

The full code used for the benchmarks (in Aria and in C) is available at
github.com/renan061/aria, in the benchmarks folder.

6.1
The cost of monitors

In the next subsections, we compare benchmark results between Aria
and C for two embarrassingly parallel problems: matrix multiplication and
numerical integration. It is our goal with these benchmarks to assess how taxing
on performance are the data sharing restrictions imposed by the language,
particularly in cases where Aria’s monitors need to be constantly accessed to
manipulate data.

Our solutions for both problems follow a fork-join logic where indepen-
dent executions do not write to the same memory location concurrently and,
therefore, cannot cause data races. In this case, C has an advantage over Aria,
since it allows for data-race-free programs to be developed without the need to
employ synchronization mechanisms such as locks. Hence, the C benchmarks
serve as a base for comparison to measure the cost of using monitors.

In our benchmarks, we created new threads using the pthreads library
in C and the spawn statement in Aria. Moreover, in order to wait for thread
completion, C programs used the pthread_join function while Aria used a
custom Barrier monitor.

Regarding methodology, we measured the running times of each problem
10 times, with each accounting for 100 iterations of the program. This way, we
were able to analyze consistent times with little to no variance. Furthermore,
we measured single core performance using non-parallel algorithms, without
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Language Threads Time Speedup Efficiency

C

1 9.76 - -
2 4.99 1.96 98%
4 2.94 3.32 83%
8 2.85 3.43 43%

Aria

1 9.79 - -
2 5.02 1.95 98%
4 2.96 3.30 83%
8 2.89 3.39 42%

Table 6.1: Matrix multiplication benchmark results

creating new threads, while our multithreaded benchmarks were tested with
2, 4, and 8 threads.

6.1.1
Matrix Multiplication

In this benchmark, we computed the multiplication between a square
matrix A(n×n) and a column vector B(n×1), with n = 104. Our measurements
did not take into account the time taken allocating memory and initializing A

and B with random rational numbers.
Our implementation is based on the O(n3) algorithm that results from the

definition of matrix multiplication, where we calculate cij = ∑k
n=1 aik ×bkj for

each element of the resulting matrix C(n×1). This algorithm is not optimal; the
Coppersmith–Winograd algorithm, for example, achieves O(n2.376) complexity,
however, we opted for the naive algorithm for its ease of implementation.
Besides, matrix multiplication computations are heavily dependent on cache
optimizations, which we also chose to ignore for simplicity.

The multithreaded code divided the resulting vector C(n×1) in sections,
each assigned to a different worker thread. In the C program, the resulting
vector was stored in a global array and, in Aria, since we cannot have global
mutable arrays, we used an Array monitor. In this benchmark, using an Array
monitor meant acquiring the monitor’s mutual exclusion n times, one for each
time a worker finished calculating a value of the C vector and called the set
method.

Table 6.1 shows performance results for matrix multiplication in Aria
and C. Despite C’s slight superiority, the results are similar enough for the
difference to be statistically irrelevant. We believe that efficiency decreases
in the 8 threads scenario because the program’s threads start competing with
other processes in the computer for CPU time. In the future, we aim to evaluate
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Language Threads Time Speedup Efficiency

C

1 12.60 - -
2 6.30 2.00 100%
4 3.35 3.76 94%
8 2.72 4.63 58%

Aria

1 13.76 - -
2 6.85 2.00 100%
4 3.63 3.79 95%
8 2.93 4.70 59%

Table 6.2: Numerical integration benchmark results

this claim by running the benchmark in a computer with more than 8 threads.

6.1.2
Numerical Integration

For this benchmark, we computed the area under the curve of a quadratic
function using the middle Riemann sum. Specifically, we approximated the
value of

∫ 16
0 5x2 − 10x + 10dx using 8 × 107 rectangles.

Both of our Aria and C programs followed the same logic: different worker
threads were created and tasked with calculating the area of a subrange of the
curve, which constitutes the fork part of the algorithm; then, when all workers
were done, the main thread calculated the total area by joining the partial
results. As regards to implementation, the main thread received the workers’
partial results by accessing shared struct references in C and a monitor in Aria.
We were required to a use a monitor in Aria because, unlike in C, we could
not share mutable records between threads.

Table 6.2 shows the benchmark results for C and Aria. Despite Aria being
approximately 8% slower than C, both languages achieve near equal levels of
parallelism. In particular, the speedup is almost linear with 2 and 4 threads,
and, again, efficiency decreases in the 8 threads scenario.

6.2
The benefits of unlocked monitors

In Chapter 4, we stated calling monitor methods repeatedly is cumber-
some because locks need to be constantly acquired then released, and that
unlocked monitors solve this issue. In this section, we developed a benchmark
to analyze these claims. Additionally, we tested whether the optimization men-
tioned in Chapter 5 could indeed enhance performance for unlocked monitors.
We hand optimized LLVM code generated by the Aria compiler, removing
overhead checking code for proxy objects when the unlocked monitor was not
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Time Slower
Integer array (base) 0.32 -
Regular monitor – get 14.50 44 times
Regular monitor – sum 0.32 -
Unlocked monitor – get 1.43 4.3 times
Unlocked monitor – get (optimized) 1.20 3.6 times

Table 6.3: Unlocked monitors benchmark results

used as a function argument nor assigned to a variable. This way, we were able
to compare results and check if this was an optimization worth implementing.

The problem we chose to benchmark computed the sum of all elements
in an integer array of 108 elements, with each measurement accounting for
100 iterations of the program. We developed five different solutions for this
problem so we could better analyze the results of using unlocked monitors.

The first solution used a regular [Integer] array. It served as a base
for comparison with other solutions (as it did not employ any synchronization
mechanisms). Next, we used an array encapsulated by a monitor and iterated
over it through a get method. We expected this solution to be the slowest,
because the monitor’s mutual exclusion would be acquired then released a
number of times equal to the array’s size.

In our third solution, we implemented a sum method inside the encapsu-
lating monitor, expecting this approach to be as fast as the base case. However,
adding methods to a monitor is not always desirable from a software engineer-
ing perspective. Ideally, we want to define monitors to be generic, without
creating multiple specialized methods that are each used sparsely throughout
the program.

Lastly, we tested unlocked monitors using the get method, with and
without the aforementioned hand optimization. We expected the optimized
program to be as fast as the base case, and the non-optimized version to be
slower than base, but faster than regular monitors.

As seen in Table 6.3, we were mostly correct in our predictions. Access-
ing a monitor multiple times is costly, but using unlocked monitors can speed
execution considerably. In our benchmarks, unlocked monitors were 10 times
faster than regular monitors, but still roughly 4 times slower than the alterna-
tive with no monitors. Unexpectedly, optimized unlocked monitors were only
marginally faster than their unoptimized implementation. After investigating,
we discovered that the usage of virtual tables for non-interface monitor types
burdens execution with unnecessary memory loads and precludes the compiler
from inlining some function calls. In the future, we believe changing the way
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we use virtual tables in the compiler will make the hand optimization worth
implementing.
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7
Safeness

In this chapter, we provide a rigorous argument for the absence of
data races in Aria programs. Our definition of data races (Definition 7.2) is
essentially equivalent to other common definitions, such as C++’s (11) and
Java’s (12).

Definition 7.1 (Happens-Before Relation) Two operations A and B are
ordered by a happens-before relation if both execute in the same thread or if
they synchronize with each other.

Definition 7.2 (Data Races) Two or more data operations on the same
memory location form a data race if at least one of them is a write operation,
and they do not follow a happens-before order.

In our argument, we will use var to refer to variables declared as
variable in Aria, and val for variables declared as value. Similarly, we will
use Immut to refer to the type qualifier Immutable.

7.1
Important concepts and definitions

In Aria, variables (global or local, from monitors or records) and array
elements are memory locations. Basically, memory locations correspond to
constructions that can appear in the left-hand side of an assignment statement.

A memory location can be read from and written to. We will refer to both
operations as accesses to memory locations. Variables are accessed through
their names, according to scope visibility rules. Record variables, exceptionally,
require field selection (e.g., rec.a), and array elements are accessed through
indexing (e.g., arr[i]).

A value is the result of evaluating an expression. It may or may not be
assigned to a memory location. Booleans, numbers, and strings are primitive
values. Arrays, records, monitors, and condition queues are reference values.

The invalid value is the value of every non-initialized memory location.
Reading from a memory location that contains an invalid value raises an error.

A constant memory location cannot be rewritten with other values. In
Aria, variables declared as val are constant because they cannot be reassigned.
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In the same way, elements from Immut arrays are constant since they cannot
be rewritten with other values.

An immutable memory location must be constant and indexing or field
selection operations on it must result in immutable memory locations. Essen-
tially, immutable memory locations transitively only expose access to constant
memory locations. In Aria, a val with an Immut type, the elements of an Immut
array, and the fields of an Immut record are immutable memory locations.1

A safe memory location is either immutable or a constant that references
a (not unlocked) monitor.

A local memory location can only be accessed by a single thread or
monitor. Moreover, if a local memory location exposes access to other memory
locations, those must be safe or local to the same monitor/thread.

We use these concepts to define three auxiliary lemmas.

Lemma 1 Accesses to memory locations that are local to a single thread do
not cause data races.

Proof 1 According to Definition 7.1, operations executing in the same thread
follow a happens-before order. By Definition 7.2, data races won’t occur between
operations that follow a happens-before order.

Lemma 2 Accesses to constant memory locations do not cause data races.

Proof 2 Because there are no write operations on constant memory locations,
this lemma derives from Definition 7.2.

Lemma 3 Accesses to memory locations do not cause data races if they are
always executed in mutual exclusion.

Proof 3 Mutual exclusion guarantees synchronization between operations and,
therefore, a happens-before order of execution according to Definition 7.1.

1Remember that: primitive types are naturally Immut; an array is Immut if it has Immut
elements; a record is Immut if all its variables are declared as val with Immut types; condition
queues cannot qualify as Immut.
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7.2
Arguing safeness

We base our argument for the absence of data races in Aria on one
invariant.

Definition 7.3 (Invariant) At any time during program execution, each
thread or monitor can only access memory locations that are either local or
safe.

According to Lemma 1, accessing memory locations local to a thread
cannot cause data races. Memory locations local to monitors can only be
accessed inside monitor methods. Because such methods can only be called
in mutual exclusion, Lemma 3 assures the absence of races for these locations.
Moreover, immutable memory locations are constant and only expose access
to constant memory locations, therefore Lemma 2 guarantees accessing them
does not cause data races. Finally, accesses to constants with monitor values are
covered by Lemmas 2 and 3, as monitors only expose their variables indirectly
through mutually exclusive method calls.

7.3
Arguing the invariant

We next argue that the invariant holds by demonstrating that it is
true when threads and monitors are created, and that it is preserved by any
operational step the language can take.

Thread Creation. When a thread is created (either the main thread
or one of its descendants), the language enforces the thread can only access
variables from other scopes that were defined as val with (not Unlocked)
monitor or Immut types. Hence, newly created threads can only access safe
memory locations, thus complying with the invariant.

Monitor Creation. Monitors are created through constructor calls.
Before executing the first line of code of its constructor, a monitor has access to
its own variables, globals, and parameters. A non-initialized monitor variable
is trivially local. Otherwise, if the monitor variable was initialized with a
value resulting from expression evaluation, the variable is local by definition.
Additionally, a global or a parameter must be a val with a (not Unlocked)
monitor or Immut type, which constitutes a safe memory location. In summary,
monitor variables are local memory locations, and parameters and globals are
safe, which complies with the invariant.

Preservation. We now prove that each step a thread or monitor can
take preserves the invariant. A step can be a variable declaration/definition,

DBD
PUC-Rio - Certificação Digital Nº 1812805/CA



Chapter 7. Safeness 49

(V1) and (V2), a statement, (S1) to (S8), or expression evaluation, (E1) to
(E9).

(V1) Variable declaration var x: T
Declaring a variable creates a new local memory location containing the
invalid value.

(V2) Variable definition val x: T = y
var x: T = y

Defining a variable creates a new memory location that can only be ac-
cessed by the current thread/monitor. Other memory locations accessible
through the evaluated expression "y" must be local or safe, because they
comply with the invariant. Therefore, the new memory location is local
by definition.

(S1) Assignment x = y
rec.x = y

array[i] = y
Assigning the result of an evaluated expression to a variable or an array
position is a rewrite operation. Assignments are only permitted if "x" is
a var (not a val) and "array" is not Immut. Therefore, we guarantee
constant and, consequently, safe memory locations cannot be reassigned,
only locals. A local memory location remains local after reassigned, which
leaves the invariant unchanged.

(S2) Function, method, and constructor calls
See (E5), (E6), (E7), (E8), and (E9).

(S3) Wait-For-In wait for x in y
A wait-for-in statement can only appear inside monitor methods.
It does not create or alter memory locations, neither changes memory
visibility. Moreover, despite temporarily releasing the monitor’s lock,
the statement does not break the mutual exclusion rule. Therefore,
wait-for-in statements are inconsequential to the invariant.

(S4) Signal & Broadcast signal x
broadcast x

These statements are local to monitors.

(S5) Return return
return x

Returning from a function changes memory location visibility. Local
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variables cease from being accessible, and memory locations that were
visible before the function being called become accessible once again.
Since the invariant was preserved during the function call, it remains so in
the scope the program returns to. Furthermore, if the program returned
from a monitor method, "x" must be Immut or a monitor, which only
exposes memory locations that are safe.

(S6) While, If & If-Else while x {...}
if x {...}

if x {...} else {...}
A while statement does not create or alter data, neither changes data
visibility. The statement evaluates "x", which preserves the invariant,
and executes the loop’s block following the operational steps. Therefore,
this statement is inconsequential to the invariant. Conditional statements
(if and if-else) follow the same reasoning.

(S7) Spawn spawn {...}
The spawn statement creates a new thread.

(S8) Acquire-Value acquire value x = m.f( exp-list ) {...}
This statement creates a new memory location, the unlocked monitor,
that is local to the running thread/monitor, thus preserving the invariant.
The Unlocked type qualifier prevents it from being shared with monitors
or threads. Execution of the statement’s block follow the operational
steps.

(E1) Logical operations not or and
Arithmetic operations + - * /
Equality operations2 == !=
Primitive values true false 10 3.14 "string"
Evaluating these expressions does not create memory locations, only
values. Therefore, they are inconsequential to the invariant.

(E2) Variables
A variable represents a memory location that can be accessed by the
program. Evaluating a memory location with an invalid value raises
an error, and evaluating a local or safe variable memory location is
inconsequential to the invariant.

2Equality on reference values checks if the two values reference the same memory location.
Primitive values are trivially comparable.
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(E3) Indexing & Field Selection array[i]
rec.x

According to the invariant, the evaluated expression "array" is either
local or safe. If "array" is local, indexing it results in a local memory
location by the definition of local. If "array" is safe, indexing it results
in a safe memory location by the definition of safe. Field selection follows
the same reasoning.

(E4) Type conversions m as T
Type conversions do not convert values, and can only cast monitors
to interfaces, which does not break the Immut and Unlocked qualifiers.
Hence, evaluating this expression is inconsequential to the invariant.

(E5) Array and record constructors Immut [ exp-list ]
[ exp-list ]

Immut T(n)
T(n)
...

Constructing an array creates new memory locations filled with values
from exp-list, which comply with the invariant. Alternatively, an array
of size n can be created with invalid values. In both cases, if the array
is Immut, its elements must also be Immut. The invariant is preserved
because the new array can only be accessed by the current thread
or monitor and, thus, is local. Record constructors follow the same
reasoning.

(E6) Function calls f( exp-list )
Calling functions changes memory location visibility. At the start of a
function, only globals variables and parameters are visible. The invariant
is preserved because global variables are a subset of previously accessible
memory locations, and the function’s parameters are local memory loca-
tions containing also a subset of previously accessible memory locations.
The execution of the function follows the inductive steps, and the return
statement was discussed in (S5).

(E7) Method calls m.f( exp-list )
Calling methods change memory location visibility from threads to
monitors. At the start of a method, only globals, parameters, and the
monitor’s variables are visible to the monitor. The invariant is preserved
because parameters from methods and constructors are constants (val)
that must be immutable (Immut) or (not unlocked) monitors. Therefore,
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only safe (globals and parameters) or local (monitor variables) memory
locations are accessible to the monitor. Moreover, local memory locations
shared through return values could potentially break the invariant when
visible to other threads, since they would not be local anymore. However,
the language guarantees methods can only return safe memory locations,
which preserves the invariant.

(E8) Monitor constructors M( exp-list )
A monitor constructor creates a new monitor.

(E9) Queue constructors ConditionQueue()
Condition queue constructors can only be called inside monitors, and
condition queue values cannot escape their monitors because they are
not safe. Therefore, the result of evaluating this expression is always
local to a monitor.
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8
Conclusion

In this dissertation, we have shown how it is possible to combine monitors
with referential semantics given an appropriate set of typing rules. Using type
qualifiers and immutability, Aria provides monitors as originally proposed,
while also enabling the addition of new features. Mutable shared data can
only be accessed in Aria inside monitor operations. Thus, the absence of data
races is guaranteed by the compiler.

To demonstrate that Aria’s rules allow enough flexibility to solve clas-
sic concurrency problems, we discussed the implementation of three different
examples of monitors. Monitors encapsulating data structures that require
mutually-exclusive access are trivial to implement. For the readers-writers
problem, we discussed two different solutions, with trade-offs regarding com-
plexity, coupling, and the avoidance of programming errors. The first solu-
tion, with a RWLock, is similar to the one found in classic texts. The hybrid
ReadersWriters monitor shows that is possible to compose basic monitors in
order to guarantee synchronization at different levels.

In order to deal with some of the drawbacks of the monitor concept,
we extended Aria with unlocked monitors and scoped values. The RW monitor
introduces the concept of scoped permissions, effectively eliminating the com-
plexity seem in the previous ReadersWriters implementation. Meanwhile, the
HashTable monitor showcases how to implement scalable parallel solutions of
higher complexity using monitors. These examples show that unlocked mon-
itors and scoped values improve the language’s flexibility and, as argued in
Chapter 7, maintain Aria’s guarantees regarding data races. At all times mem-
ory locations are either local to monitors and threads or safe for access.

In Chapter 5, we described our current implementation of Aria, highlight-
ing monitors and the added features. We plan to investigate possible optimiza-
tions and alternatives to deal with the runtime checks present in our solution.
In Chapter 6, we tested the language’s overall performance and observed it is
comparable with C in the examples we benchmarked. We also measured the
performance benefits of unlocked monitors and concluded using this new fea-
ture indeed enhances performance when accessing multiple monitor methods
sequentially.
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